								3.61	,
1		$yn^2 = n^2 + d$ or $y = 1 + \frac{d}{n^2}$					4	M1	
	•	$yn^2 - n^2 = d$ or $-d = n^2 - yn^2$ or $y - 1 = \frac{d}{n^2}$						M1	•
		$n^{2}(y-1) = d$ or $-d = (1-y)n^{2}$						M1	for factorising n^2 from a suitable expression.
									or $n^2 = \frac{d}{y-1}$
	•		n	$a = \sqrt{\frac{d}{v - d}}$	<u>-</u>			A1	or $n^2 = \frac{d}{y-1}$ Accept $n = \sqrt{\frac{-d}{1-y}}$
									Penalise ±√ Total 4 marks
									Total 4 marks
2		xy + 3y = 5 - 2x oe						M1	multiplying both sides by $(x + 3)$ and expanding the brackets correctly
		e.g. $xy + 2x = 5 - 3y$						M1	ft dep on 2 terms on left and $(5-2x)$ on right, for collecting all x terms on
		(+2) . 5 . 2) (1	one side and non-x terms on the other side
		$\operatorname{eg} x(y+2) = 5 - 3y$			5 2		4		ft, dep on 2 terms in x , for factorising for x
				<i>x</i> =	$=\frac{5-3}{2+j}$	<u>y</u> v	4		oe allow $\frac{5-3y}{2+y}$ as answer so long as
									previously seen $x = \frac{5 - 3y}{2 + y}$
									Total 4 marks
3	a	e.g. $d - g = 2ac$				M1			first step e.g. subtract <i>g</i> from both vide all terms by 2 OR divide all
		$\frac{d}{2c} = \frac{g}{2c} + a$	<i>d</i> -	- σ	2	A1	term		DR divide all terms by $2c$
			$a = \frac{d}{2}$	<u></u>	1		•••		
4		$v^2 = \frac{x+1}{x^2}$					4	M1	for squaring
		$y^{2} = \frac{x+1}{x-4}$ $y^{2}(x-4) = x+1 \text{ or } y^{2}x-4y^{2} = x+1$						M1	for removing the fraction
		$y^{2}x - x = 4y^{2} + 1 \text{ or } -4y^{2} - 1 = x - y^{2}x \text{ or } $ $x(y^{2} - 1) = 4y^{2} + 1 \text{ or } -4y^{2} - 1 = x(1 - y^{2})$						M1	for expanding the bracket and rearranging for <i>x</i> so that the terms in <i>x</i> are on one side of the correct equation
			x	$=4y^2-y^2-y^2-y^2-y^2-y^2-y^2-y^2-y^2-y^2-$	+1 -1			A1	for $x = \frac{4y^2 + 1}{y^2 - 1}$ or $x = \frac{-4y^2 - 1}{1 - y^2}$
									(need to see <i>x</i> = somewhere) <i>Total 4 marks</i>
5	(b)	eg $p + d = at$ or $-at = -d - p$ or $\frac{p}{a} = \frac{at}{a} - \frac{d}{a}$ of Working not required, so correct answer scores	oe e		2		M1		et first stage in rearrangement
		Working not required, so correct answer scores full marks	t =	$\frac{p+d}{a}$			A1		$t = \frac{p}{a} + \frac{d}{a} \mathbf{0r} \ t = \frac{-d - p}{-a}$
								Must I	have "t =" either in working or on r line
6	a	$e.g. A + 5z = \frac{c}{-} oe or$					2	M1	for a correct first step e.g. add 5z to both sides
		e.g. $A + 5z = \frac{c}{y}$ oe or $Ay = c - 5yz$ oe							or multiply all terms by y
			c =	= y(A +	5z)			A1	oe
7	(b)	$p^2 = \frac{ac + 8}{2}$				4	M	for	removing square root
		$p^2 = \frac{ac + 8}{3 + c}$ $3p^2 + cp^2 = ac + 8$					M		multiplying by denominator and
		$cp^2 - ac = 8 - 3p^2 \text{ or } 3p^2 - 8 = ac - cp^2$					M1:	ft for oth ft tl	panding in a correct equation gathering terms in c on one side and ler terms the other side their equation dep on 2 terms in c at two other terms
			c	$=\frac{8-3}{p^2-1}$	$\frac{p^2}{a}$		Al	or	$c = \frac{3p^2 - 8}{a - p^2}$
	1	1		Г					

8 (b)	$g+7 = \frac{c+3}{4+c} \text{ or } g(4+c) = c+3-7(4+c) \text{ or}$ $g = \frac{c+3}{4+c} - \frac{7(4+c)}{4+c} \left(= \frac{c+3-28-7c}{4+c} \right)$		4	M1	Adding 7 to both sides as a first step or removing fraction correctly
	eg $4g + gc + 28 + 7c = c + 3$ or $4g + gc = c + 3 - 28 - 7c$ oe			M1	removing fraction and expanding all brackets in an equation with no more than one error
	eg $gc + 7c - c = 3 - 28 - 4g$ or $28 - 3 + 4g = c - 7c - gc$			M1ft	ft dep on previous M1 - terms in c on one side and other terms on the other side in an equation
		$c = \frac{-(4g+25)}{g+6}$		A1	oe eg $c = \frac{25+4g}{-6-g}$ or $c = \frac{3-28-4g}{g+7-1}$ oe
					[if c = is missing allow full marks if seen in working otherwise 3 marks]
					(SCB2 for an answer of
					$c = \frac{-4 - 4g}{g - 1}$ oe or $c = \frac{31 - 4g}{g - 8}$ oe
					SCB1 in working for $4g + cg = c + 3 - 7$ oe or $4g + cg - 28 - 7c = c + 3$ oe

9	$(a =) \frac{14}{3 \times \frac{7}{4y - 3} - 7}$		3	M1	For a correct substitution
	$(a=)$ $\frac{14(4y-3)}{21-7(4y-3)}$ oe eg $\frac{56y-42}{21-28y+21}$			M1	or for a correct but unsimplified answer in the form $\frac{m}{n}$ ie the denominator should be simplified to remove the fraction
		$\frac{4y-3}{3-2y}$	-	A1	oe but must be simplified
					Total 3 marks
	14.7		-	3.61	T : (24.1 : (C 1
9 alt	$x = \frac{14 + 7a}{3a} $ and		3	M1	For rearranging ' x ' to be in terms of a and equating two expressions for a
	$\frac{14+7a}{3a} = \frac{7}{4v-3}$				
	a(42-28y) = 56y-42 oe eg $(a =) \frac{56y-42}{21-28y+21}$			M1	or for a correct but unsimplified answer in the form $\frac{m}{n}$
		$\frac{4y-3}{3-2y}$		A1	oe but must be simplified
·		5 2,			Total 3 marks

10		$n^2 = \frac{4d}{t^3} + 1$		4	M1 for multiplying by the denominator or for dividing the RHS by t^3
	$t^3\left(n^2-1\right) = 4d \text{ oe}$	$n^2 - 1 = \frac{4d}{t^3}$			M1 for isolating terms in t^3 and factorising the correct expression of the equation or for isolating the $\frac{4d}{t^3}$ term
	$t^3 = \frac{4d}{\left(n^2 - 1\right)}$ oe	$t^3 = \frac{4d}{\left(n^2 - 1\right)}$			M1 for making t^3 the subject
			$t = \sqrt[3]{\frac{4d}{\binom{n^2-1}{n^2-1}}}$		A1 oe eg. $t = \sqrt[3]{\frac{-4d}{(1-n^2)}}$ or $t = \left(\frac{4d}{(n^2-1)}\right)^{\frac{1}{2}}$ SC B2 for $t = \sqrt[3]{\frac{4d}{(n^2+1)}}$
					Total 4 marks

11 (d)	$c + 8v = t^3$		2	M1	
			$t = \sqrt[3]{c + 8v}$		A1	oe
						SCB1 for an answer of $t = \frac{c + 8v}{3}$ oe

12	$v^3 = \frac{6+5x}{}$		4	M1 for removing cube root
,	x+4 $xy^3 + 4y^3 = 6 + 5x$ oe			M1 for multiplying by denominator and expanding in a correct equation or
	$x - \frac{5x}{y^3} = \frac{6}{y^3} - 4$			for gathering x terms on one side and the other terms on the other side in a correct equation in fractional form
	$xy^3 - 5x = 6 - 4y^3$			M1 for gathering terms in x on one side and other terms the other side in a correct equation
				for removing all fractions
	Correct answer scores full marks (unless from obvious incorrect working)	$x = \frac{6 - 4y^3}{y^3 - 5}$		A1 or $x = \frac{4y^3 - 6}{5y^3}$
				SCB2 for $x = \frac{6 - 4y^{\frac{1}{3}}}{y^{\frac{1}{3}} - 5}$ or $x = \frac{4y^{\frac{1}{3}} - 6}{5 - y^{\frac{1}{3}}}$
				$y^{\frac{1}{3}}$ can also be y^2
'				Total 4 marks

13	(b)	$w^2 = \frac{e+g}{}$		4	M1	for removing square root
		ef-d				
		$w^2 e f - w^2 d = e + g \text{ oe}$			M1	for multiplying by denominator and expanding in a correct equation
		$w^2 e f - e = g + w^2 d \text{ oe}$			M1ft	ft their equation dep on 2 terms in e and two other terms
						for gathering terms in e on one side and other terms the other side
		Correct answer scores full marks (unless from obvious incorrect working)	$e = \frac{g + w^2 d}{w^2 f - 1}$		A1	oe eg $e = \frac{-g - w^2 d}{1 - w^2 f}$, $e = -\frac{g + w^2 d}{1 - w^2 f}$ oe
						must see $e = $ on answer line or in working.